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Abstract 

The problem of inverting crystallographic diffraction 
data to obtain structural information is examined 
within the maximum-entropy formulation of informa- 
tion theory. The principal features of the present 
method (termed statistical geometry) are: (i) all predic- 
tions of the method are consistent with the given 
information (constraints) and least biased with respect 
to missing information, (ii) the adoption of weak 
(typically non-linear) constraints for incorporating the 
major part of the structural information guarantees that 
a solution exists in practice and leads to filtering of the 
structure maps consistent with the accuracy of the 
data, (iii) general conditions are established which lead 
to unique solutions for the structure map, (iv) atomicity 
is not a prerequisite, (v) other methods of crystal- 
lographic inversion may be incorporated via the 
adoption of appropriate constraint relations, and (vi) 
the task of numerical solution is roughly linear in the 
number of reflexions and in the number of pixels in the 
structure, and involves only straightforward numerical 
techniques. These features suggest that the method is 
especially well suited to problems such as the structure 
determination of biological macromolecules, and the 
determination of high-resolution electron-density maps, 
although it manifestly provides a general framework for 
treating a wide class of image-processing problems. 

1. Introduction 

An inversion procedure is required whenever the 
available measurements depend on the value of a 

* Permanent address: CSIRO, Australia. 

0567-7394/83/010047-14501.50 

function of interest at more than one point. In cases 
where the measurements are incomplete and noisy, the 
problem essentially becomes one of statistical inference 
based on partial information. For cases where the 
number of possible states is extremely large, a very 
powerful technique for inversion involves the use of the 
information-theoretic procedure of maximum entropy 
combined with the adoption of weak constraints for the 
bulk of the data. In such cases the formal structure of 
the method closely resembles that of equilibrium 
statistical mechanics and, in the context of the 
crystallographic inversion problem, is here termed 
statistical geometry (SG). 

This work and tfiose following in the series aim at 
establishing both a conceptual framework and practical 
numerical methods with which the usual crystal- 
lographic inversion problem of determining structural 
information from kinematical diffraction data can be 
pursued. In the present context, a state refers to a 
particular assignment of scattering density throughout 
the unit cell. For high resolution and large-molecule 
structures, the number of significantly different possible 
states (structures) becomes astronomical. It is in cases 
such as these that the information-theoretic approach is 
capable of providing optimal predictions of the struc- 
ture starting from a partially known or unknown 
structure. The principal prerequisite of the method is 
that one's a priori and experimental information about 
the system be expressible in suitable mathematical 
form. One may consider the present general approach 
to subsume all currently practised numerical 
approaches to the crystallographic inversion problem 
(e.g. Karle & Hauptman, 1950; Sayre, 1952) as special 
cases in that they may be incorporated in the method 
via the adoption of appropriate constraint relations. 
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The basic outline of the paper is as follows: In 9 2 the 
fundamental expressions of the general information- 
theoretic approach are presented (9 2.1) leading to the 
presentation of the particular expressions which obtain 
when the state x of the system corresponds to a 
probability distribution p over microstates (9 2.2). The 
reader who is primarily interested in the practical 
details of the present method may proceed directly 
from the present section to 9 2.3 where the funda- 
mental equations, (13b), of the method are presented 
and the existence and uniqueness of solutions to them is 
discussed. A variational approach to the determination 
of the Lagrange multiplier vector such that the chosen 
constraints are satisfied is outlined in 9 3 and Appendix 
2. 9 4 focuses consideration on the particular case of 
the crystallographic-inversion problem and presents 
illustrative constraint relations which may serve to 
invert diffraction data statistically in the form of 
structure factors with phases which are either: (i) 
partially known or (ii) essentially unknown. The task of 
numerically solving the fundamental equations is briefly 
discussed in 9 4.5 and some illustrative results for a 
simple one-dimensional structure are given in 9 4.6. 
Finally, in 9 5 a discussion of the potential advantages 
of the present approach to crystallographic inversion is 
presented. 

The results presented in this paper provide a very 
general basis for the future development of math- 
ematical and numerical methods for treating the 
crystallographic inversion problem which will be 
described in later papers in this series. Throughout 
these works, a guiding aim will be to try to establish 
mathematical methods which are numerically tract- 
able, even when the number of reflexions is extremely 
large, such as for biological macromolecules. 

2. Information theory 

Following the lucid work of Jaynes (1957; 1963; 1979), 
we here give a suitably general statement of the 
problem to be treated by information theory as follows: 
Suppose that the quantity (random variable, message, 
state) x can take on the values (states) (x ,  x2 . . . . .  xN) 
where N can be finite or infinite, and that the 
expectation values of several functions fl(x), f2(x), ..., 
fM(X) are given by C~, ..., C u, where M < N (typically 
M ,~ N). The problem then is to find the probability 
assignment P(x) which satisfies the given data: 

~. P(x)=  1 (1) 
X 

and 

Z P(x) f~(x) = C r for r = 1 , . . . ,  M, (2) 
x 

and is the least-biased estimate possible based on the 
given information; that is, it is maximally non- 

committal with regard to missing information. The 
great conceptual advance provided by information 
theory resides in the discovery by Shannon (1948) that 
there is a unique and consistent measure of the amount 
of 'ignorance' (uncertainty, entropy) in a discrete 
probability distribution and that it is given by 

S[x] = - ~ P(x) In P(x) (3) 
X 

and is immediately seen to correspond to the Boltz- 
mann expression for entropy which arises in statistical 
mechanics. Shannon showed that it is only this function 
Six] which is (i) positive, (ii) increases with increasing 
uncertainty and (iii) is additive for independent sources 
of uncertainty. 

To obtain the most unbiased probability assignment 
we must maximize (3) subject to the constraints (1) and 
(2). The mathematical technique for achieving this is 
described in 9 2.1 below. The function (3) was actually 
introduced by Shannon in connection with the problem 
in communications theory of encoding and decoding 
messages via a noisy line, and serves as a very useful 
measure for comparing the relative efficiency of 
different coding schemes. The problem of coding 
structural information in crystallography has been 
discussed from this viewpoint by Gassmann (1977). 
Secondly, the great power of the information-theoretic 
approach to problems of statistical inference resides in 
the interpretation that the maximum-entropy distri- 
bution describes our state of knowledge in a way which 
is maximally non-committal with regard to missing 
information. As more information is discovered, it may 
be incorporated, via (2), into a new distribution and so 
the claim repeated. At each stage the information- 
theoretic predictions are totally consistent with our 
'state of knowledge' about the system, and thus the 
method is internally consistent in the sense that it can 
only lead to 'false' predictions if our input information 
is false or internally inconsistent. However, the method 
need not lead to unique solutions or to any solutions, 
and these matters are discussed in 99 2.3 and 4.5. 

In loose terms, the maximization of S[x] subject to 
the constraints (1) and (2) leads to the result that P(x) 
is the 'smoothest' distribution consistent with the given 
information [see Wernecke (1977), and 9 4.3.3 for a 
discussion of this property]. Thus, maximizing (3) may 
be viewed as a form of filtering operation. However, the 
maximum-entropy approach is much more powerful 
than just a mathematical smoothing operation, and is 
perhaps best viewed as a calculus of inductive 
reasoning (see e.g. Tribus, 1969; Levine & Tribus, 
1979). 

2.1. The distribution of maximal entropy 

The distribution P(x), which is of maximal entropy, 
subject to the constraints of normalization and to the M 
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(not necessarily linear) data constraints (2) is readily 
determined, using the Lagrange undetermined multi- 
pliers procedure, to be of the form (see e.g. Jaynes, 
1957; Levine, 1980) 

(4) 

where g(x) is the degeneracy factor and we have 
incorporated (1) in (2) by including the case r = 0. The 
M + 1 (Lagrange) multipliers, X = (21,22,23,..., 2 M) 
and 20, are determined by the M + 1 conditions (2) and 
(3). The resulting set of equations for 20 and ,1. 

Z[fr(x)-Cr]P(x)=O, f o r r = 0 ,  1 , . . . ,M  (5) 
x 

is in general coupled and highly non-linear in )1, [even 
when theft(x) are linear in xi, which in general will have 
many solutions or none (see also § 4.4). 

Formally, the Lagrange multipliers can be com- 
puted from the entropy of the distribution P(x) (Levine, 
1980) 

M 

S[xl = Z 2rCr, (6) 
r = 0  

since 

8S[xl 
2 r - -  for r =  0,1,  .. ., M. (7) 

8Cr 

For other properties of the maximal-entropy distri- 
bution, the reader is referred in particular to the works 
of: Shannon (1948); Khinchin (1957); Kikuchi & 
Softer (1977); Jaynes (1957, 1963, 1979); Tribus 
(1969) and those of Levine and co-workers cited in the 
references. 

2.2 Expression for  the structural entropy in terms of  
the distribution over microstates 

Thus far, our discussion of the state x has been quite 
general. We now consider the situation where x defines 
a structure and the different possible structures 
(macrostates) may be considered to arise by dis- 
tribution of n identical units of scattering over N 
identical subcells (pixels, microstates) of the structural 
volume. One might like to think of these units of 
scattering as photons, although our approach is 
essentially geometrical in character and the precise 
physical nature of the scattering need not be specified 
and the units of scattering may be made arbitrarily 
small. If we now conduct an experiment in which the n 
units of scattering are distributed over the N pixels, 
then the macrostate of the system (i.e. the structure) 
may be written as x = n, where xj = nj is the number of 

units of scattering in the j th  pixel. Let us then assume 
that the experiment is repeated many times and that 

<nj> = npj (8) 

is the mean value of the number of scattering units in 
the j th  cell. Then it may readily be shown (see e.g. 
Levine, 1980, p. 99) that maximizing the entropy (3) 
subject to the N constraints (8) leads to the result 

N 

S (p) = - n  ~ pj In pj (9) 
j = l  

for the structural entropy, and is a special case of (3). 
We have actually expressed S in terms of the constraint 
values, p [cf. (6)], which are the probability values for 
the distribution of scattering units over the N micro- 
states or pixels. The relationship between macro- and 
microstates is the multinomial distribution 

N N 

P(n) = g(n) [-[ i f ]J= nt. I-] p.~J/nj!. ( I0)  
j----, j = l  

The important simplification provided by (9) is that we 
do not need to enumerate all possible macrostates each 
time we wish to determine a structure by maximizing S 
subject to some given structural information, but may 
proceed directly from (9). Such an approach is an 
example of sequential inference using maximum 
entropy (Levine, 1980, p. 98). 

Expressions other than (9) (which we shall hence- 
forth denote by S,) for the entropy in terms of 
microstates have been used in processing diffraction 
and spectral data. More particularly, the form S 2 -- 
-~V=, lnp j  has many adherents (e.g. Ables, 1974; 
Wernecke & D'Addario, 1977) and arose in a field 
quite different from the present one, namely from 
consideration of the power spectrum of a Gaussian 
random process or time series (Shannon, 1948, 1949). 

Recently, Kikuchi & Softer (1977) have attempted 
to clarify the appropriate choice for the entropy function 
in different cases by taking a quantum optical approach 
to the problem and showed that both the S, and S 2 
expressions may be derived as limiting cases of a single 
one, and the choice between them depends on a 
parameter n/z, n being the number of photons received 
and z the number of degrees of freedom per pixel. They 
give a simple expression for z which contains a 
component due to the spatial uncertainty as to the 
origin of the photon within a pixel and to a temporal 
uncertainty as to the time of arrival of the photon, and 
conclude that in general bright radio objects have a 
large n/z (and therefore should be processed with $2) 
while less-bright objects at shorter wavelengths have a 
small n/z (and therefore should be processed with S,). 
From their results it would appear that z is very large 
for, say, the X-ray diffraction case and so S, is also 
favoured there. 
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Examination of the mathematical role of S in the 
MEM method shows it to reside in the following im- 
portant mathematical properties, namely: (i) preserva- 
tion of positivity among the pj and (ii) strict concavity 
which tends to bias p towards a uniform distribution 
and so provide a smooth (see § 4.3.3 and also 
Wernecke, 1977, Appendix B) interpolation when the 
pixel size becomes smaller than the Shannon-Nyquist 
interval (see Shannon, 1949) of the data. These proper- 
ties are common to both S~ and S 2, and when the data 
set is large in relation to the resolution sought in the 
structure determination, the structure is largely deter- 
mined by the data rather than the interpolation method, 
and so negligible differences in predictions would be 
expected (see also Wernecke, 1977, Appendix B). On 
the other hand, when data is sparse or super-resolution 
is sought, some small, albeit significant, differences in 
structure may occur depending on the choice for S. 

In summary, our basis for adopting (9) in the work 
to follow is (i) the information-theoretic basis of (3) and 
(ii) the strictly geometrical argument leading from (3) 
to (9). 

2.3. The maximum entropy distribution over 
mierostates 

We may now reformulate the maximum entropy 
determination of p as follows. 

Maximize (9) subject to the constraints 

N 

~. p j =  1 ( l l a )  
j = l  

and 

fr(P)=Cr,  r =  1 , . . . ,M .  ( l lb )  

It may be noted that an alternative form of (1 lb) often 
encountered in the literature, especially in the case of 
linear constraints, is 

N 

( h r ( P ) )  = ~. pjhrj(p)----Cr, ( l l b ' )  
j = l  

where for linear constraints hri is independent of p. It 
may be noted that ( l l b ' )  leads to a unique fi(p), 
whereas the converse is not true. 

Mathematically, the constrained maximization prob- 
lem formulated above may be achieved by using the 
method of Lagrange undetermined multipliers and 
involves unconstrained maximization of 

N 

Q(p;2o, 2 ) = - ~ p ~ l n p j - 2  o ~ p j - 2 . f ( p )  (12) 
j j : l  

w.r.t, the pj (where for convenience we have set the 
constant n = 1) leading to the N equations 

GEOMETRY. I 

c3Q c~f(p) 
-- n [ l n p j + l ] - - 2 0 - - ~ , .  - -0  (13a) cOpj cOpj 

p j = e x p  {-20-~,.f j l(p)} f o r j =  1 . . . . .  N (13b) 

for p(20, 2) withf~.j = COfr(p)/c~p i. The correct values of 
20 and 2 in (13) are those which exactly satisfy the 
constraints (11). 

The important questions as to the existence, unique- 
ness, and practical evaluation of the maximum-entropy 
solution remain, and may be usefully considered in two 
stages, namely: (i) the determination of the maximum- 
entropy solution, p(2), which maximizes (12) for given 
2, and (ii) the determination of ~, = ~s such that the 
chosen constraints are satisfied. 

Concerning the first stage, one may note that if Q(p) 
is a strictly concave function (i.e. one which is always 
underestimated by linear interpolation or, equivalently, 
one which has a negative definite Hessian, see e.g. 
Rockafellar, 1970) on the convex domain of probability 
distributions, p, then it will have at most one local 
maximum in its domain (Rockafellar, 1970; Wer- 
necke, 1977). Since S~(p) [or S2(P)] is a strictly 
concave function and the sum of concave functions is 
also concave (Rockafellar, 1970) a sufficient but not 
necessary condition that Q(p) be a strictly concave 
function is that each constraint contribution to Q 
individually be concave. A trivial case is that of only 
linear constraints (which are necessarily both convex 
and concave) and which therefore lead to at most one 
local maximum for Q(p). For non-linear constraints 
the matter of establishing the concavity or non- 
concavity of the constraint contributions to Q is more 
difficult and, for the particular constraint functions 
introduced in the present work, will be discussed 
in {}§ 4.1 and 4.4. The task of practically evaluating 
p(,l.) for non-linear constraints is a central task in the 
present method and is capable of being approached in 
many ways (see e.g. Gull & Daniell, 1978; Willingale, 
1981, and § 4.5), however, it suffices here to note that 
the function Q(p) offers a possible variational approach 
to the determination of p(,t) and, for the specific 
constraints considered in the present work, would 
involve the results given in Table 1. 

Concerning the second stage, namely the deter- 
mination of the value of 2 = 2 s such that the constraints 
(11) are satisfied by p(AS) _ pS, one might choose to try 
to determine ,t s by least-squares fitting of the con- 
straints to the constraint values (see e.g. Gull & 
Daniell, 1978; Willingale, 1981). However, even for 
convex constraints, one does not have any guarantee of 
a unique solution to the minimization problem and one 
may obtain false minima. Furthermore, evaluation of 
even first derivatives of the sum of squared deviations 
would in practice seem to require M distinct numerical 
solutions p(2) for different ~,. For this reason, it seems 
useful to consider an alternative iterative variational 
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approach to the determination of it s which allows one to 
make certain restricted claims as to existence and 
uniqueness of solutions for it, and also permits 
evaluation of arbitrary many orders of derivatives of 
the variational function w.r.t, it from only one 
numerical solution for p(it). For cases involving more 
than one or two constraints, this latter approach can 
lead to a very considerable saving in computation 
indeed. 

The ),-variational principle has been introduced in 
the information-theoretic context by Agmon, Alhassid 
& Levine (1978, 1979) for the special case of linear 
constraints and has close ties with some standard 
results in statistical mechanics (see e.g. Landau & 
Lifshitz, 1980, ch. XII). In the present notation, the 
basic results for the it-variational principle and linear- 
ized constraints are presented in Appendix 2 (see also 
§ 3). For the case of non-linear constraints, as occur in 
the present study, it is valuable to investigate to what 
extent the variational principle may be applied either by 
linearizing the constraints and treating the problem 
iteratively or by generalizing the variational principle to 
cover non-linear constraints. These questions are 
explored in the following section and, in order to 
facilitate the discussion, it is helpful to reformulate 
some of the basic expressions introduced thus far in a 
manner so as to resemble similar results in statistical 
mechanics. 

not alter p obtained by solving (14a). Differentiation of 
(142) w.r.t, it leads directly to the result 

U U @ j ,  
aF(it; C') _ _ ~ f r  ~ J(P)PJ-- Z it 'fj 2' j(P) Pj , 

,02,. j =  ~ ' j,, j= i c92'. 

(16) 

where the first term on the right-hand side of (16) arises 
from the explicit dependence of p on )1, while the second 
term arises from the implicit dependence of the 
constraint derivatives on it. The quantities Opj/O2". 
appearing in (16) may be expressed in terms of a set of 
coupled simultaneous equations (Appendix 3) which 
are potentially useful in improving numerical solution 
methods. In (16) we have adopted the notation 

a% 
f ; : J ' J  ....... J' =- @j, . . .  apj, (17) 

and ~l is defined in (14b) above. It is the presence of the 
second term in (16) and, more specifically, its explicit 
dependence on it which appears to make difficult the 
development of a general variational principle based on 
F when the constraint functions, f(p), are non-linear. If, 
however, the constraints are linearized, as outlined, say, 
below, then some very useful results may be invoked. 

3. The it-variational principle applied to non-linear 
constraints 

3.1. The structural freedom 

It is useful to rewrite (13b) as 

pi = exp " {-20 - it. c3f(p)~ " = exp {-ii. } / z  
• _ @ J l  

j =  1 . . . . .  N, (14a) 

where we have redefined 2 o and it, and 

Cg?r Cqf r - - 1  
f~'J= ~ = apj C', = f r . j -C ' r ,  (14b) 

with C'  at present denoting an arbitrary constant. It 
may be noted that the normalizing condition (1) leads 
directly to the result that 2 o is a function of the 
remaining M Lagrange multipliers, viz 

exp {20(it; C')} - exp {F(it; C')} = z(it; C ' )  

N 

= Z exp {--it.~l}, (15) 
j = l  

where z(it; C') would be called the partition function in 
statistical mechanics and 20(it;C') or F(ii;C') the 
grand potential. Different choices for C' lead to 
different forms for the variational function F, but do 

3.2. Linearized constraints, a cumulant generating 
function and a variational principle 

If we consider now the case where the constraint 
derivatives, ~1, are evaluated in an arbitrary trial 
distribution pt, which need not be a self-consistent 
distribution p(it) satisfying (142) for given it, we obtain 
the linearized form 

pj(it; pt) = exp {--it.~l(pt)}/z(it; pt) (18) 

and the corresponding form of (15) is 

exp {20(it; C', p') } - exp { F(it; C',  pt) } 
N 

= z(it; C ' ,  p') = ~ exp {_it.~jl(pt)}, 
j = l  

(19) 

where F ( i t ;C ' , p  t) [or 20(it;C',p/)] may be viewed in 
statistical terms (see e.g. Kubo, 1962) as the cumulant 
generating function for the cumulants of the fi(p/) in 
the distribution p(2; pt) (see Appendix 2.1), or, equiva- 
lently, the cumulants of ~l(pt). Secondly, F(it; C' ,p  t) is 
shown in Appendix 2.2 to be a strictly convex function 
of it yielding a variational approach to the deter- 
mination of itS(p t) and pS(pt) which corresponds to the 
maximum-entropy solution satisfying the chosen con- 
straints, but with the derivatives ~1 evaluated in the trial 
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distribution, pt. To establish this variational approach 
one chooses C' such that 

C ' :  Cl(p t) = Z fjl(pt) p~ 
J 

N 
= [ C -  f(pt)] + • p~fj~(pt) + (AC1), (20a) 

j=l  

where 

A C l =  ½ Z (P~ t s _p) ) (p ) ,  _pj , )  f~,(pt) + . . .  
jj, 

= O(Ip s -  pt[2). (20b) 

In (20) pS denotes the sought after, but as yet unknown, 
maximum entropy solution to the full non-linear 
problem, so that for given pt the error term in (20) is: 
(i) small (for pt near pS), (ii) constant [i.e. independent 
of 2(pt)] and (iii) ultimately tends to zero on full 
self-consistent solution of the problem when pt ... pL 
From the variational principle for linear constraints 
outlined in Appendix 2, it immediately follows that, for 
a given Cl(pt), AS(p t) is uniquely determined as the 
solution of 

0F(A; C 1, pt) 

c~;t r 

N 
-- Z "1 /_A. ~,J(pt) t - f r ,  j (pt) exp 

j=l  

= ( f ~ ( p t ) ) = 0 ,  r = l  . . . .  , M  (21) 

and is the value of A which simultaneously minimizes 
F(A; C 1, pt) and leads to the maximum-entropy solution, 
pS(pt), satisfying the linearized constraints with con- 
straint values CL Working within the linearized 
formulation of the problem, it immediately follows that 
one may directly determine F(A; C 1, pt) as a function of 
A and so determine As(pt), the value at which F has a 
global minimum, without any additional function 
evaluations of f~(p9 (i.e. Fourier transforms of p). 

Alternatively one could choose instead to evaluate 
only a limited number of derivatives of F(A;C~,p t) 
w.r.t. A at 2, e.g. via the cumulant property of 
F(A;CI, p t) described in Appendix 2, and this also 
would not involve any additional Fourier transform 
operations. If one stopped at second cumulants of 
~)(Pg, then numerically the process of estimating AS(p0 
would correspond to the Newton-Raphson method, 
and convergence would ultimately be quadratic (i.e. 
very rapid) (see also Alhassid, Agmon & Levine, 
1978). Thus, from a given trial solution for p, one may 
immediately determine a maximum-entropy solution 
which (approximately) satisfies the linearized con- 
straints if such a solution exists. Conditions for the 
existence of such a solution are given in Appendix 2.3 
and in fact allow one to state the ranges of values of C 1 
for which a (unique) solution exists for given pt. 

From a practical point of view, the above results 
provide the basis for an iterative approach to the 
determination of 2 s either from successive values of 

p(At), the maximum entropy solution to the non-linear 
problem for a particular trial A, or via solutions pS(pt) 
which are maximum entropy solutions satisfying 
linearized constraints. Both these methods have been 
pursued for particular cases, and only involved iterative 
refinement of ~J(pt) without any attempt to use a 
predictor-corrector approach to refine AC I. However, 
an extrapolation procedure on 2S(pt)/2 was often found 
useful. The second case above offers an iterative 
pathway to determining pS which proceeds via solutions, 
pS(pt), which are always maximum-entropy solutions 
satisfying the linearized constraints, and involves 
simultaneous refinement of A and p(A) aimed at con- 
verging on p(A s) (i.e. essentially a single-loop refine- 
ment). 

3.3. Summary o f  notation for  probability distributions 

For convenience, we here summarize some of the 
more intricate nomenclature used for labelling the 
various different probability distributions introduced 
in this paper, namely: 

p --- p(A) 

pt 

pS = p(A s) 

p(A; pt) 

pS(pt) __ pS, t = p[As(pt); pt l 

the maximum-entropy dis- 
tribution when the La- 
grange-multiplier vector is 
A. 
an arbitrary trial probability 
distribution. 
the maximum-entropy pro- 
bability distribution which 
satisfies the chosen con- 
straints and occurs when 
A= A'. 
the maximum-entropy dis- 
tribution for arbitrary A 
and linearized constraints 
evaluated in the trial distri- 
bution pt. 
the maximum-entropy dis- 
tribution satisfying the lin- 
earized constraints evalu- 
ated in the trial distribution 
pt. 

4. Application of  information theory to the 
crystallographic inversion problem - statistical 

geometry 

In conventional crystallography, the primary data are 
in the form of diffraction amplitudes, while it is the 
Fourier transform of the structure factors (amplitudes 
times a phase factor) which is of physical interest. Not 
only is the phase factor for each reflexion usually not 
known, but the extent and precision of the data in 
reciprocal space is inevitably limited by measurement 
errors and physical limitations such as finite resolution 
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of the measuring apparatus. The essential problem to be 
tackled is the optimal (least-biased) determination of 
the structure (say electron density) that one can make 
on the basis of: (i) limited and noisy data (structure 
amplitudes), and (ii) other a priori assumptions about 
the system. Such a problem is immediately suitable for 
treatment by information theory (or more specifically 
the particular application developed here called the 
statistical geometric method, and henceforth ab- 
breviated to SGM), provided one can express one's 
knowledge and assumptions about the system in 
tractable mathematical form. 

For example, following the recent work of Gull & 
Daniell (1978), who considered the closely-related 
problem of processing radio-astronomical data, the first 
stage in the approach is to consider the unit cell to be 
divided up into N equal subcells (pixels), and for pj to 
denote the fraction of the unit-cell scattering density in 
cell j. For simplicity we will restrict our development to 
the one-dimensional case (the approach immediately 
extends to arbitrary higher dimension). The Fourier 
transform of the Pl will be denoted by Pk, where these 
quantities are related by (A 1.1) and (A 1.2). Concern- 
ing the available information, we will firstly suppose 
that we have measurements of the Pk, including phase 
information, denoted by E k, for a subset of reflexions, 
D 1. Secondly, we will assume that we have measure- 
ments of the structure amplitudes, A k, for the subset of 
reflexions D 2, which may overlap D~. Finally, we will 
introduce some a priori information about the expected 
structure, namely, that we wish the structure-factor 
map to be at a uniform level for the subset of ce l l s jc  B. 
Such a constraint is sometimes used by protein 
crystallographers to assist in phase determination 
(Colman, private communication). 

accuracy). Such an approach using weak constraints 
has the following advantages: 

(i) filtering of the map to avoid spurious detail (see 
e.g. Ables, 1974; Wernecke, 1977; Gull & Daniell, 
1978). 

(ii) existence of a solution in practice, since M is very 
small and N is very large so that the number of degrees 
of freedom is very large. 

(iii) ease of treatment by numerical methods since 
the dimensionality in ,;t space is low (§ 3). 

There are many parallels one might draw between 
the method of weak constraints adopted here and 
similar approaches adopted in statistical mechanics. 
For example, in the canonical ensemble of equilibrium 
statistical mechanics one assumes only that the 
expectation value of the Hamiltonian, H(x), over the 
states x for an n-particle system is equal to the energy, 
E, i.e. 

Z P(x) H(x) -= (H)  = E, (22) 
X 

and not that, say, the expectation value of the 
Hamiltonian for each type of particle is equal to E/n~. 
It is helpful to appreciate that equilibrium statistical 
mechanics in, say, the canonical ensemble (Jaynes, 
1957) involves only one piece of information in the 
information-theoretic sense, namely the weak con- 
straint (22), and yet is routinely used to predict 
macroscopic and average microscopic properties of 
systems where N is typically of order 1023. The 
Lagrange multiplier corresponding to (22) is, of course, 
the inverse temperature 1/kBT, where k B is Boltz- 
mann's constant. 

In the present case we introduce the following 
appropriate, but by no means necessary or exhaustive, 
types of information in the form of weak constraints. 

4.1. Information in the form of  weak constraints 

At first glance, one might think that the most 
efficacious way to proceed would be to enforce the 
distribution p to satisfy exactly the datum for each 
individual reflexion or piece of information (this would 
correspond to a method of  strong constraints). How- 
ever, the data are themselves known only approxi- 
mately and so exact fitting to such noisy data would 
lead to spurious detail in our structure map p. 
Moreover, the dimensionality of our problem in 2 space 
would be of order (N l + N 2 + N3) and so would 
rapidly become intractable in numerical terms for data 
sets involving many reflexions and, even worse, the 
problem may become intractable in principle since a 
solution may not even exist. By contrast, a much more 
powerful and simpler approach to the problem of 
structure determination in the present framework is to 
adopt weak constraints (at least in treating any 
information which is not known exactly or to very high 

4.1.1. The starting or known structure factors. If one 
has some a priori information on the phases of certain 
reflexions (e.g. from dynamical scattering measure- 
ments, Hurley & Moodie, 1980; heavy-atom tech- 
niques; anomalous scattering; envelope functions; 
guesswork; etc.) and if this is combined with the 
measured X-ray diffraction amplitudes to give phased 
structure factors, E k, for a set of reflexions, Dl, then an 
appropriate weak constraint function to incorporate 
this data, taking into account the errors in the data, is 
(see also Gull & Daniell, 1978) 

1 IP k -- Ekl 2 
, (23) 

f l ( P ) -  2N 1 k , °'k.2 1 

where N~ is the number of reflexions in D~ (taken to 
include all Friedel pairs k and -k) ,  ak, ~ represents the 
standard deviation in the datum E k, while Pk is the trial 
structure factor and is given by (A1.2). To be 
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Table 1. Table o f  constraint derivatives 

.r;:;.; ...... ; , -  % , . . .  ~p;--, 

The various derivatives of Pk and IPkl w.r.t, pj are given in Appendix 1 and all derivatives of thef~ here are zero for v > 2 and r -- 1 and 3. 

Cons t ra in t  
number  

r f r  o C r i l r ,  j f2rj J ~2.r i 

N 
Zps i 1 o o 

y=l 1 ' exp {-2~zijklN} 1 1 

- - .  

kE D, , N I  6~.1  
2N l k~O, a~.l X ( P k -  Ek) × exp { 2 / r i ( j ' - j ) k / N I  k~D, 

1 X--" (IPkl - Ak) 2 

2N2 k ~  ~r2- 2 k. 2 

__. 
N3 s~ ~ o~ 

N2 k ~ D2 k. 

x 1 -- - 
1 1 - -  

0.2 2 
k. 2 x exp 1 2 ~ i ( j ' - j ) k  iN] ([  1 A__'~ 1 A.  

x exp t-2~rijk/N} 1 A k x I t l  --~ - ~ k l )  + 2 IPkl 

x ( P k - - A k e X p  {i<okl} + 2 IP~I / 
exp × 12iep k - 4zrijk/Nl} 

x exp 12i¢p k - 2n i ( j  +j')k/NI} ! 
J 

(N 3 - 1) 2 

U~ 

2 (N 3 -  1) 

o.2 N 2 2 (N 3 - 1 ) 2 {  1'~ 2 (N 3 - 1) 3 

consistent, we assume that the data E k have been scaled 
such that E 0 = 1, so that both the E k and Pk are unitary 
structure factors [see e.g. Tsoucaris & de Rango, 
1970]. If the E k have Gaussian errors with standard 
deviation ok. 1 and the Pk are assumed to be true values, 
then fl(P) possesses a reduced 2'2 distribution with 
C 1 =  1. 

It should be noted that the constraint function (23) 
together with its associated Lagrange multiplier, 2], 
leads to a concave contribution to Q via (12), since 
f l(P) is a convex function (see Appendix 4 or an 
alternative proof by Wernecke, 1977) and 2] is 
positive (Appendix 5). Thus, the introduction of in- 
formation into the statistical geometrical method via 
this constraint does not lead to any problems of 
non-uniqueness of P0,) (see §§ 2.3 and 4.4). 

The Lagrange multiplier associated with constraint, 
21, may be viewed as a generalized eontrast parameter 
since for 21 = 0 it can be seen via (14a) that no contrast 
arises in p due to this information, whereas as 21 > 0 
becomes larger, more and more contrast due to the 
informationfl(p) is introduced into the structure. 

4.1.2. The measured structure amplitudes. For 
reflexions where there is no a priori information on 
the phase or where the phase assignment is highly 
uncertain, an appropriate weak constraint to incorpor- 
ate such data, taking into account the errors in the 
amplitudes, is (see also Gull & Daniell, 1978) 

1 Z (IPkl-- A*)2 
f~(P)- 2N2 k~D2 O2.2 

1 ~ I P k-Akexp{itpk}12 
-- 2., ~r~- ' (24) 

2N2 k ~D2 k. 2 

where N 2 is the number of reflexions in D2 (taken to 
include all Friedel pairs), Ok, 2 is the standard deviation 
in the measured unitary structure amplitudes, A k. The 
quantityf2(p) does not have a 2 '2 distribution; however, 
the number of structure amplitudes is usually so large 
that we may apply the central limit theorem to prove 
that the distribution off2 is approximately normal with 
expectation value C2 - 1. 

Unlike the previous constraint function, the ampli- 
tude constraint function (24) is not in general convex, 
as can readily be demonstrated by trying to pursue an 
argument similar to that given in Appendix 4, where- 
upon it may be shown that if there exists an A k 4: 0, 
then one can find a p such that [Pk [ is sufficiently small 
that the quadratic form associated with f~  jj, (see Table 
1) becomes negative. Thus, the introduction of in- 
formation into the statistical geometrical method via 
(24) leads to the possibility that Q given by (12) is no 
longer strictly concave and hence of non-unique 
solutions for p(2), as might have been expected on 
other grounds. As a matter of consistency, we note at 
this point that constraints (23) and (24) treat zero- 
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amplitude reflexions identically (provided one assumes 
the same errors). 

As regards the Lagrange multiplier 22, this too may 
be viewed as a generalized contrast parameter, only 
corresponding here to the amplitude information f2(P). 

4.1.3. Background flattening. In order to enforce 
local flatness in a structure, the following weak con- 
straint is introduced: 

[ ] pj j~Bpt,/N3 2 
1 

f3(P) = N-j3 ~ ]~.  (r~ , (25) 

where N 3 is the number of cells in B. This constraint 
simply expresses the requirement that the expectation 
value ofpj  for a l l j  c B is equal to the mean value ofpj  
taken over the N 3 cells in B. The standard deviation 
for the distribution of pj is taken to be a~,, and so 
the expectation value of (25) is given by C 3 = 
[ (N  3 - -  1)/Nj 2. 

The constraint f3(P) given by (25) may readily be 
shown to be convex by an argument closely resem- 
bling that given in Appendix 4 and using thef~jj,  listed 
in Table 1. For constraint function (25), the associated 
Lagrange multiplier 23 may be viewed as controlling the 
level of noise or contrast in the background density of 
the map. 

4.2. Information in the form of strong constraints 

The use of weak constraints is very desirable for 
building the bulk of the diffraction information into the 
determination of p; however, in addition to information 
arising from weak constraints, one might want to build 
certain other information into p in the form of strong 
constraints. For example, one might consider that the 
distribution is given by p(?), where ? is some smaller set 
Cof parameters than the pj and that the maximum 
entropy distribution pS(~) is to be determined. In 
practice, ~, might be the atomic coordinates or the 
various parameters in a bonding-electron density basis 
set. 

Another form of information which may be intro- 
duced into p in the form of strong constraints is that of 
non-crystallographic symmetry (e.g. see Bricogne, 
1974), which involves the averaging of pj over cells 
which correspond to equivalent elements of the basic 
unit of structure (e.g. a virus particle). 

4.3. Information automatically incorporated in the 
structure map via the maximum-entropy formalism 

4.3.1 Normalization. The requirement that p be 
normalized, i.e. ~ju__ip j = 1, is guaranteed in the 
present formalism via the introduction of 2 0 or the 
partition function z in (14a). 

4.3.2. Positivity. The maximum-entropy formulation 
of the problem and the introduction of p as a discrete 

probability distribution automatically guarantee that 

1 > p j > 0  f o r j =  l, ..., N, (26) 

as can readily be seen from (14a). 
4.3.3. Smoothness. From a fundamentalist view- 

point, smoothness of the maximum-entropy structure 
map arises from the maximum-entropy principle and 
the concept of entropy as a measure of the amount of 
information in the structure map. The larger the 
entropy, the smaller the amount of information in the 
map. More specifically, the maximum-entropy struc- 
ture, pS, tends to be smooth in the sense of having the 
most nearly uniform distribution of p values satisfying 
the given information (Gull & Daniell, 1979). This has 
been shown mathematically by Wernecke (1977) for 
both the S 1 and S 2 definitions of entropy, in the sense 
that application of a general linear smoothing operator 
to a structure never decreases the value of the entropy 
and constitutes a form of global rather than local 
smoothness. Local smoothness may be enforced by 
additional constraints, if necessary. 

4.4. Uniqueness and symmetry 

The question of the uniqueness of SGM solutions 
was discussed to some extent in § 2.3 where it was 
divided into two parts, namely: Firstly, that which 
concerns the maximum-entropy solution, p(2), for given 
~, which is unique if Q given by (12) is strictly concave 
w.r.t, the convex domain of possible structures, p, for 
which a sufficient condition is that each of the 
constraint functions multiplied by its associated La- 
grange multiplier makes a concave contribution to Q. 
As we have seen from § 4.1, both constraint functions 

fl(P) andf3(P) make concave contributions to Q, where- 
as f2(P) does not. The non-concavity of the amplitude 
constraint contribution to Q is an expression in the 
present context of the well-known general non-unique- 
ness of solutions to crystal structure determination (see 
e.g. Dainty, Fiddy & Greenaway, 1979). Nevertheless, 
it can be seen from the present discussion and the 
properties of convex functions that, for given values of 
21 and 23, there will exist a range of values of /]'2 
including zero for which Q will remain strictly concave 
and so have a unique solution. This observation 
suggests the following approach to the determination of 
SGM solutions when non-concave contributions to Q 
are involved (see also § 4.6 and Fig. 1), namely: (i) 
establish the unique solution, p(J.), which maximizes the 
corresponding Q and then gradually introduce non- 
concave contributions to Q by gradually increasing 
their associated Lagrange multiplier, so as to try to 
avoid jumping to distant solutions when uniqueness 
breaks down; (ii) to choose constraints which give as 
strongly or nearly concave contributions to Q as 
possible (e.g. tend to minimize the maximum eigen- 
value of the Hessian of Q, see also Wilkins, 1983a). 
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Clearly, the constraints should, where possible, be 
chosen to contain sufficient information so as to 
distinguish between different symmetry cases. For 
example, if only the constraint f2 were imposed (which 
is translationally invariant) then the origin of the unit 
cell in direct space would not be defined. This could 
readily be overcome by introducing a maximum of 
three phased structure factors into the constraint f~. A 
second example of degeneracy is that of distinguishing 
centro- and non-centrosymmetric structures. Addi- 
tional phase information may be needed to fix the 
handedness of the structure. The general problem of 
homometric structures (i.e. different structures having 
the same diffraction intensities) also means that one 
may have to assign some additional phases to produce 
unique solutions. If sufficient information is included in 
the constraints, then the SGM may be expected to pick 
the smoothest structure which fits the data (e.g. 
centrosymmetric rather than non-centrosymmetric 
structures). 

An immediate practical consequence of case (ii) is 
that, although mathematically zero measured structure 
amplitudes are treated identically by constraints f~ and 
fz ,  it is preferable to include zero and near-zero 
structure amplitude cases in f l  than in f2, since phase 
errors for such amplitudes will largely be irrelevant, 
whereas inclusion of such near-zero structure ampli- 
tudes in f2 can lead to large departures from convexity 
off2. Thus, inclusion of zero-measured structure factors 
in the SGM offers to provide valuable additional 
information in helping initial structure determination 
(also J. White, private communication) by contrast 
with conventional methods (see e.g. Woolfson, 1980) 
which tend to ignore these cases in the initial structure 
determination stage. 

Secondly, we briefly consider the uniqueness of 
maximum-entropy solutions p(,13) or p[2S(pt); pt] as 
functions of 2. The interpretation in § 4 of 21 and 2 2 a s  

generalized contrast parameters and the knowledge that 
p(2 s) and p[2S(pt);pt] satisfy the available information 
in some sense suggests that the uniqueness of 2 s is not 
as serious a matter as that of p(2) discussed earlier. 
From the work of § 3, Appendix 2 and Levine (1980), 
it follows that 2S(p t) is unique for given pt Cl(pt) and 

1 1 linearly independent constraints (i.e. ~C,./cgC s = ~,.~). 
Thus one may seek to determine k s from an initial trial 
structure, pt, by an iterative procedure using the 2- 
variational principle, with the knowledge that, at each 
step in the iterative procedure, an essentially unique 
structure is determined which differs in generalized 
contrast from the previous one. 

4.5. Numerical  solution fo r  the scattering density 

The equations (14a) may be expressed in a form 
similar to that given by Gull & Daniell (1978) by 
substituting for f ,  x j using the results given in Table 1 

and Appendix 1. For a given trial 2, the resulting set of 
non-linear equations p(2) are amenable to solution by 
iteration substitution (see e.g. Gull & Daniell, 1978; 
Willingale, 1981), although some smoothing of 
successive solutions was found necessary in order to 
achieve convergence. Self-consistency of the solution 
may be checked by comparing the left- and right-hand 
sides of (14a). In principle, the solution may be 
evaluated to arbitrary numerical accuracy and does not 
involve any approximations of a mathematical kind. 
The value of 2, namely 2 s, which satisfies the chosen 
constraints may be established by the 2-variational 
principle outlined in § 3, and this has been found to 
work quite well in practice. 

In following papers of this series (Wilkins, 1983a,b) 
other approaches to the determination of the structure 
map (i.e. p) will be presented. 

4.6. Illustrative example 

In following papers of this series (Wilkins, 1983a,b) 
the SGM may be used, we have taken a simple 
one-dimensional trial structure consisting of three 
Gaussian peaks with different heights and half-widths 
(see thick solid curve in Fig. 1). The two lowest-order 
structure amplitudes (including random errors) were 
then assigned phases (one corresponding to a choice of 
origin in the unit cell and the second obtained by 
adding a random error to the true phase) which on 
Fourier inversion yield the initial trial structure shown 
as a dotted curve in Fig. 1. Using only constraint 1, with 
the two phased structure factors, we find that the SGM 
yields the two-peaked structure shown as a dashed 
curve in Fig. 1. This structure shows: (i) better 
resolution than the initial trial structure, (ii) no regions 
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Fig. i. One-dimensional structure distributions corresponding to: 
(i) true structure (thick solid curve), (ii) trial structure using two 
phased structure factors with errors (dotted curve), (iii) SGM 
determination of structure based on two phased structure factors 
with errors (dashed curve), (iv) SGM determination of structure 
based on two phased structure factors and ten structure ampli- 
tudes all with errors (thin solid curve). 
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of negative density, and (iii) slightly less bias in the 
assignment of density to peaks 2 and 3. Addition of the 
next ten amplitudes (with random errors) into the 
amplitude constraint alone and continued refinement 
with the SGM using two constraints yields the faint 
solid curve shown in Fig. 1. This structure shows 
extremely good resolution and agreement with the true 
structure and has three main peaks with near true 
peak-to-peak separations and low noise in the back- 
ground. A very weak false peak arises between peaks 1 
and 2, consisting of only one point, but otherwise the 
SGM solution is extremely smooth and is a conserva- 
tive estimate of the true structure. Also shown in Fig. 1 
is the Shannon-Nyquist interval (Shannon, 1949) cor- 
responding to 14 degrees of freedom in the data (i.e. 
two phased structure factors and ten amplitudes). 
Structural information inside this interval corresponds 
to super-resolution. It should be noted that the deter- 
mination of structure in the present case involved the 
assignment of only one non-arbitrary phase and no 
assumption was made in the refinements as to peak 
shape. Precise details of the model and method of 
solution will be given elsewhere (Wilkins & Varghese, 
in preparation). 

5. Discussion 

The statistical geometrical method offers a powerful 
and general approach to the crystallographic inversion 
problem. It is not practical to discuss here in detail all 
the advantages which this method offers. However, we 
briefly outline below some of the advantages which we 
expect for the method and which will be explored in 
subsequent papers. 

(i) The statistical geometrical approach to the crystal- 
lographic inversion problem is an optimal method in a 
clearly defined statistical sense, and is capable of exact 
solution to arbitrary numerical accuracy (Gull & 
Daniell, 1978; Willingale, 1981). 

(ii) The method operates in direct space where 
information is easily interpreted. 

(iii) It allows one gradually to increase the number of 
reflexions and/or resolution in direct space, i.e. it can 
be used to treat i~he problems of phase determination 
and phase extension by continuous degrees, without 
any fundamental need to distinguish these cases. The 
method of statistical geometry even allows a certain 
(small) amount of 'super-resolution' to be achieved (e.g. 
see Frieden, 1972, and Gull & Daniell, 1978), i.e. some 
resolution to be obtained inside the Nyquist-Shannon 
interval (Shannon, 1949) due to the additional assump- 
tion in the SGM of smoothness and positivity of p. 

(iv) It does not necessarily involve the concept of 
atomicity and so is also applicable to: (a) low-angle 
neutron studies of protein structures, (b) radio- 
astronomy, (c) electron-micrograph and lattice-image 
processing, (d) optical-image processing, and (e) almost 
any image processing problem. 

(v) The method is not necessarily restricted to the 
analysis of Bragg reflexions but may in principle be 
used to invert the total measured scattering data (for 
the case of diffuse scattering alone, see also Clapp, 
1969, 1971; Wilkins, 1972). However, this would in 
practice seem to involve the introduction of clusters or 
'supercells' in direct space. 

(vi) The method incorporates information about the 
estimated accuracy of each reflexion (data point). 

(vii) The method incorporates a diagnostic for 'bad' 
reflexions, since one may investigate the contribution of 
each reflexion to constraints such as 1 and 2 in § 4. 

(viii) The method can incorporate such information 
as background flattening and non-crystallographic 
symmetry (see e.g. Bricogne, 1974) which is used in the 
structure determination of biological macromolecules. 

(ix) It does not involve the inversion of very large 
matrices or other weighty numerical tasks. 

(x) Provided the errors ak, 1 and ak, z are correctly 
chosen, it leads to the smoothest map consistent with 
the original data (i.e. the method incorporates a 
filtering procedure) and does not lead to spurious detail 
due to series terminations (see Gull & Daniell, 1978, 
1979; Wernecke, 1977). 

(xi) The constraints may be interactively modified at 
any stage in the solution process so as to 'bootstrap' to 
a solution, e.g., as certain features of the solution are 
ascertained, D 1 can be enlarged. 

(xii) The method may be used to try to improve 
resolution in one region of a structure map while 
treating the remainder of the map in a constrained 
manner (see Gull & Daniell, 1978), e.g. some groups of 
pixels in the structure may be set equal. This could be 
of value, say, if one is particularly interested in certain 
'active sites' of a large molecule and wishes to try to 
develop this region to higher resolution or, conversely, 
if the structure is known to higher resolution in one 
region, this may be used to help structure determina- 
tion elsewhere. Also, one might choose to refine the 
structure in alternate horizontal and vertical slices (a 
'multislice' approach) which may have some computa- 
tional advantages. 

(xiii) The SGM is well suited to problems with large 
N such as the determination of the structures of 
biological macromolecules or the determination of 
high-resolution electron-density maps in small-molecule 
systems. The SGM should not become greatly more 
difficult to evaluate in practice as the number of 
reflexions and the number of pixels, N, increases, since 
the problem of numerical solution is approxmately 
linear in the number of reflexions and in N, and is 
limited by the speed of the Fourier transform operation. 

(xiv) The close formal correspondence between the 
crystallographic inversion problem and equilibrium 
statistical mechanics, which is apparent from the 
present work, should enable many of the very powerful 
techniques and important results of statistical mech- 
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anics and the many-body problem to be brought to 
bear on to the statistical-geometrical problem. This 
may in fact help in the derivation of explicit math- 
ematical results for the statistical-inversion problem. 

(xv) The statistical-geometric formalism guaran- 
tees the positivity of the pfs as a minimal condition (see 
§ 4.3.2). 

(xvi) In addition to purely geometrical information 
from diffraction measurements, one might also choose 
to introduce information of other types, e.g. energetic 
considerations, into the formalism, given some know- 
ledge of the dependence of configurational energy on p 
or a subset of p. 

(xvii) Although mathematically one seeks A s as 
providing the optimal determination of the structure 
based on the given information, values of A near A s in 
practice are sufficient to determine a structure to high 
accuracy, since the interpretation of, say, A 1 and 22 in 
§ 4.1 as generalized contrast parameters means that 
variation of these away from 2~ and /l~, respectively, 
will primarily change the contrast in the maps but not 
the underlying 'structure', i.e. the spatial relationships 
in the structure such as coordination numbers, bond 
lengths, and angles. 

6. Conclusions and prospects 

The statistical-geometric method, because of its 
generality and numerical tractability, offers a powerful 
approach to the crystallographic inversion problem, 
even when very large and complicated structures are 
being studied by X-ray and other diffraction tech- 
niques. In the long term, one may view the method as 
providing a mathematical pathway to microscopy 
starting from diffraction data and any a priori 
information or assumptions about the structure. 

In later papers in this series we will concern 
ourselves more with practical aspects of the method 
and develop both mathematical and numerical 
approaches to the solution of the central equations in 
the method, and apply these methods to simulated and 
real structure determinations. 

The authors wish to thank Drs Colman, Fraser, 
Head, Johnson, Mathieson and Moodie for helpful 
discussions. One of us (SWW)wishes to thank the ILL 
for its hospitality during a stay where this work was 
initiated. 

A P P E N D I X  1 

Some useful definitions and results 

Pj = N-1 ~. Pk exp {--27djk/N } 
k 

N 
Pk = IPkl exp {/Ok} = ~ pjexp {2rcijk/N} (A 1.2) 

j = l  

(A l .l) 

P~ = P-k (A 1.3) 

OPk t92 Pk 
-- exp 12zdjk/N}; = 0 (A 1.4) 

Opj Opj, Opj 

OIPkl 
- -  - cos (Ok -- 2rcjk/N) (A 1.5) 

am 
C~21Pk I I 

- - - -  {cos [2n(j '  - j ) ]  
cgpj, cgpj IPkl 

--cos I(o k -- 2rcjk/N] cos lq~k- 27~j' k/N]}. 

(A 1.6) 

A P P E N D I X  2 

Properties of the scalar potential F(A,; C' ) 

The scalar potential F(A;C') was defined in (15), for 
arbitrary A, C' and pt, by 

F(A; C', pt) -- In [ ~  exp { -A. ' ) "  }] 

A 2.1. Cumulant generating function 

Considering now the derivatives of F with respect to 
2 evaluated at A, one may readily show that: 

First derivative: 

0F(A; C', pt) 
= - Z f r }  ' t  Pl  = _ ( ~ / , t )  

02, j 

Second derivative: 

~'s(?~'r  :~.?l , t? l ,  tpj__(~j¢l, tpj)(~j?l, 

: ( ( i / . '  - < ? / " ) ) ( Z " ' -  ( A " ' ) ) )  

: <.?r"' Z " ' )  -- < ? : " ) < Z " ' ) ,  
(A2.3) 

where all expectation values are taken in the distri- 
bution p(A;pt). That is, in statistical terms (see e.g. 
Kubo, 1962), F(2; C', pt) is the cumulant-generating 
function for cumulants of f ) , t  in the distribution 
p(A; pt). 

= -  ~. (fr} ' t -  C;) pj= __(f/,t C;). 
J 

(A2.2) 

c0 2 F(A; C ', pt) 
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A2.2. Variational function (structural freedom) 

It follows from (A2.3) that F(A;C' ,p t) is a strictly 
convex function whenever the constraints are linearly 
independent (Levine, 1980). From (A 2.2) it follows that 
the problem of satisfying the M constraints (1 lb) can 
equivalently be expressed as determining the value of 
2 such that 

0F(A; C', pt) OF 
= - -  (A; C 1, pt) 

0At 0,t, r 

= - - ( j ~ / > = 0 ,  f o r r = l  . . . .  , M  

(A2.4) 

where C ~ is given by (20). 
Thus the problem of maximizing (3) subject to (11) is 

equivalent to minimizing the strictly convex (since A2.3 
is a variance-covariance matrix for the variable f~) 
function F as a function of  A. This result forms the basis 
for a very direct and powerful variational method for 
determining A such that the M constraints are satisfied, 
since knowledge of ~ '  t for a trial pt immediately leads 
to knowledge of arbitrarily many higher derivatives of 
F w.r.t. A via (A2.3) or to F(A; C ~) itself via (A2.1). For 
linear constraints C~ = Cr and this method has been 
discussed by Agmon, Alhassid &Levine (1978, 1979). 
It may be noted that even for extremely large data sets 
the task of solving for 2 (i.e. minimizing F in A) involves 
only simple numerical operations and the inversion of 
an M x M matrix, where M in the weak-constraint 
method is typically less than, say, 10. 

It may also be seen from (9), (A2.1), and the above 
variational principle for F (see also Agmon, Alhassid & 
Levine, 1979) that 

S[p(2; pt)l _< S[p(As;pt)] -- F(AS(pt); pt) __ F(A; pt). 

(A2.5) 

so that F(A; C ~, pt) is an upper bound to the entropy of 
any distribution which is consistent with the same set of 
constraints. 

solution for As(p t) exists] is that 

1,t J~r, ml, < 0 

and for all r, (A 2.7) 

~ l t  f~,'~,x > 0 

which from (20) is equivalent to the requirement that 

f l , i t  < Cl(pt) <~ 1.t fm~.x . ( A 2 . 8 )  

A P P E N D I X  3 

Variation ofpj  wlth 2 

With (14a), the quantities OpJ02 r appearing in (16) 
may be expressed without approximation as 

02. 

Opj,, ] 

~_ ~ , j  PJ 

(A3.1) 

(A3.2) 

which, for given p(2) and 2, may be viewed as a set of 
linear simultaneous equations for t h e  Opj/02 r. 

Any exact or approximate solutions to these equa- 
tions are potentially important since they would yield 
8Pk/O2 r, and so enable exploration of values of 
constraints such as 1 and 2 in Table 1 in A space, 
without the need to carry out a Fourier transformation 
operation for each new value of A. 

A P P E N D I X  4 

A2.3. Asymptotic behaviour o fF  w.r.t. A 

From (A2.1) one can see that for unique upper and 
I t  I t  lower bounds, ^l. tfm~x and fml'l, respectively, on ~,  as a 

function of j, the structural freedom, F, asymptotes to 

Al, t -A.  f~l . as 2--, + ~  

and (A2.6) 

^ l , t  -A.  fmlax as A -, -oo. 

Given the above assumption, a necessary and sufficient 
condition that F(A;C') has a minimum [i.e. that a 

Convexity  o f f l (p  ) 

To prove thatfl(p ) is a convex function over the convex 
domain of possible structure vectors, p, it is sufficient 
(see Rockafellar, 1970, theorem 4.5) to prove that 

f~n!(P) is a positive semi-definite quadratic form. To 
show this, consider arbitrary p for which 

1 
2 * X&f,,lj, pj,=Z--P~Pk>O, (A4.1) 

1J' k 6~ -- 

and we have used the explicit form for f ~ n '  given in 
Table 1. 
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A P P E N D I X  5 

S ign of~ ,  s 

In discussing the convexity of constraint functions and 
for initializing numerical solution, it is helpful to know 
the sign of ;t~. To this end we note that one always has 
one explicit solution for p(2), namely the trivial case 

= 0 in which c a s e p j  = 1~N for all N. Using the 
,t-variational principle and (16), one can write 

sign (2  s) = --  s ign = s ign f ~ . j ( 0 )  
°=  k=0 j 1 

(AS.l) 

and with (20) this becomes 

sign(2Sr)=sign[fr(-~-) -Cr], (A5.2) 

which simply says that the sign of 2~ is positive if the 
constraint function value must decrease from the flat 
map to the desired constraint value and negative 
otherwise. 
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